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Pattern formation induced by nonequilibrium global alternation of dynamics
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We recently proposed a mechanism for pattern formation based on the alternation of two dynamics, neither
of which exhibits patterns. Here we analyze the mechanism in detail, showing by means of numerical simu-
lations and theoretical calculations how the nonequilibrium process of switching between dynamics, either
randomly or periodically, may induce both stationary and oscillatory spatial structures. Our theoretical analysis
by means of mode amplitude equations shows that all features of the model can be understood in terms of the
nonlinear interactions of a small number of Fourier modes.
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I. INTRODUCTION

Spatiotemporal pattern formation in nonequilibrium e
tended systems plays a role in a huge number of phys
phenomena, and in the past few decades there has been
tinuous progress in the understanding of different mec
nisms that lead to such patterns. The mechanisms for pa
formation that have been studied most thoroughly and
voked most frequently include dissipative structures, of
involving an input of heat balanced by dissipation, or chem
cal oscillations in dissipative open systems@1#. Other well-
known cases involve patterns formed by the temporal mo
lation of a parameter in systems that undergo H
bifurcations@2,3#, and noise-induced patterns@4,5#.

In recent work we introduced a new mechanism for s
tial and spatiotemporal pattern formation induced by aglobal
alternation between two dynamics, each of which by its
leads to a spatially homogeneous state@6,7#. When the alter-
nation is periodic@6# the spatial patterns are stationary
some parameter regimes and oscillatory~reminiscent of os-
cillons in granular materials@8#! in others. Random alterna
tion leads to stationary patterns@7#.

We note that there are many nonlinear spatially distr
uted systems in which external forcing leads to pattern
mation, pattern selection, pattern stabilization, appearanc
coherent structures, and other ordering effects. The exte
forcing may be constant~dc forcing!, random ~temporally
and/or spatially!, or periodic~again, temporally and/or spa
tially!. The literature on global forcing ~i.e., space-
independent forcing such as that considered in this pa!
usually focuses on periodic modulation. A few representa
examples include parametric pumping of electrons in a P
ning trap which can lead to coherent collective pha
bistable motion of the electrons’ center of mass@9#, breather
stabilization in a sine-Gordon system@10#, kink and soliton
formation in lattices of coupled oscillators@11#, and reso-
nances in periodically forced oscillatory systems@12#. Par-
ticularly interesting contributions in this last category ha
been a number of recent experimental studies in periodic
1063-651X/2002/66~3!/036216~11!/$20.00 66 0362
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forced chemical reaction-diffusion systems@13,14#. Perhaps
the most challenging manifestation of pattern formation d
to global modulation has occurred in granular materia
where vertically vibrated granular layers exhibit spatial a
temporal patterning@8,15#. Our system differs from these
others in one crucial respect, namely, that by itself each
namic exhibits no interesting behavior and, in particular,
order, pattern formation, oscillatory behavior or instability
any kind. It is the alternation between uninteresting dyna
ics ~generalizable to any periodic modulation! that is entirely
responsible for the appearance of patterns in our model.

Our earlier work, based on a class of models associa
with the Swift-Hohenberg equation@16,17#, was mainly nu-
merical. Herein we develop an analytic theory that captu
often quantitatively but in any case qualitatively, all the fe
tures of the pattern formation mechanism in all parame
regimes tested. The theory is based on a mode analysis o
nonlinear problem and the retention of only a few mod
whose evolution reproduces the principal behavior of
system. Our detailed analysis is for a one-dimensional v
sion of the model, for which we also present simulation
sults for comparison. These simulations complement our
lier two-dimensional simulations. We also outline th
straightforward extension of our theory to two dimension

In Sec. II the general formalism, model system, and
important parameters of the problem are laid out. Section
presents the numerical simulation results for the o
dimensional version of the model. The analytic theory and
predictions are presented in Sec. IV, where comparisons
the numerical results are also detailed. We conclude wit
short summary and discussion in Sec. V.

II. GENERAL FORMALISM

To illustrate the proposed mechanism, we conside
simple family of models that exhibit patterns. The ove
damped Langevin dynamics for a scalar fieldw(r ,t) that
depends on both spacer and timet reads in general
©2002 The American Physical Society16-1
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ẇ~r ,t !52V8„w~r ,t !…1Lw~r ,t !1j~r ,t !. ~1!

The field could, for instance, represent the concentration
chemical species at a given spatial position and time, o
scalar function of the velocity in a fluid. The temporal ev
lution of the field is driven by a local force that can b
derived from a local potentialV(w) by its coupling with
other locations, indicated by the operatorL, and by fluctua-
tions ~for example, thermal fluctuations! modeled by the ran-
dom termj(r ,t). We assume thatj(r ,t) is Gaussian distrib-
uted, has zero mean value, and has a correlation func
given by

^j~r ,t !j~r 8,t8!&5s2d~r2r 8!d~ t2t8!. ~2!

A system such as~1! must satisfy two requirements fo
pattern formation: it must exhibit local multistability, that i
the local potential must have at least two stable equilibri
points, and it must have a morphological instability@16#, i.e.,
uku50 cannot be the most unstable Fourier mode. A para
matic example is a phenomenological model for t
Rayleigh-Benard system near the convection threshold:
Swift-Hohenberg~SH! model @17#. A brief review of this
model should be useful to clarify the features of the mec
nism we are about to present.

For the SH model the local potential and the coupli
term read, respectively,

VSH~w!5
1

4
w42

a

3
w32

b

2
w2,

LSH[2~11¹2!2. ~3!

Note that the coupling operator determines anI s morphologi-
cal instability according to the classification criteria of Cro
and Hohenberg@16#, with uk* u51 as the most unstable Fou
rier mode. Throughout this paper we will consider the co
pling LSH. As for the local potential, we can distinguis
different cases according to the value of the parametersa and
b. If a50 andb<0, or if a5” 0 andb50, VSH(w) has a
single stable equilibrium point, and the system therefore d
not develop~heterogeneous! patterns. For all other cases
spatial structure develops; its shape depends on dimen
ality and on the symmetries satisfied by Eq.~1!. If a50 and
b.0, the local potential has two stable equilibrium poin
and is symmetric with respect to the linew50. Equation~1!
is then invariant under the transformationw↔2w, and in
two dimensions the system shows the rolls that are cha
teristic of the stationary structures associated with conv
tion. On the other hand, ifa and b are different from zero,
VSH(w) still exhibits two stable equilibrium points but th
inversion symmetryw↔2w is no longer satisfied by the
evolution equation. In this case a two-dimensional syst
shows localized stationary spots arranged in a hexagona
tice pattern.

According to this discussion, ifV(w) is monostable no
patterns appear, and the steady state of the system is spa
homogeneous. The homogeneous state is determined b
equilibrium pointw̃ of the effectivelocal potential
03621
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Ṽ~w!5V~w!1
w2

2
. ~4!

The termw2/2 comes from the ‘‘1’’ in the coupling term
acting on the field@see Eq.~3!#. That is,w̃ is the solution of

V8~ w̃ !1w̃50. ~5!

Note that althoughV(w) is monostable,Ṽ(w) may not be,
and then one may wonder about the possibility of genera
a pattern, despite the fact that the local potential has only
equilibrium point. However, this will not occur: by consid
ering small fluctuations around the homogeneous statew

5w̃1d, and linearizing Eq.~1!, the following evolution
equation for the Fourier component~indicated by a hat! of
the field for the most unstable modesk* is obtained:

ḋ̂~k* ,t !52V9~ w̃ !d̂~k* ,t !, ~6!

which leads to unstable behavior only ifV9(w̃),0. Since
V(w) has only one equilibrium point, it follows thatV9(w̃)
.0 and thus no pattern arises even ifṼ(w) is not
monostable. Moreover, it may happen thatV(w) and Ṽ(w)
are not monostable, yet no structure develops beca
V9(w̃).0. Hence we arrive at the following conditions:

if V8~ w̃ !1w̃50, but

V9~ w̃ !.0, then no pattern develops; ~7a!

if V8~ w̃ !1w̃50 and

V9~ w̃ !,0, then a pattern develops. ~7b!

Consider now aglobal switching mechanism between tw
local potentialsV1(w) andV2(w):

ẇ~r ,t !52L~ t !V18„w~r ,t !…2@12L~ t !#V28„w~r ,t !…

1Lw~r ,t !1j~r ,t !. ~8!

Here L(t) is a dichotomous function of time that takes o
the values 0 and 1. In this way eitherV1(w) or V2(w) acts
on the system ateverysite at a given time. It is easy to chec
that Eq.~8! can be rewritten as

ẇ~r ,t !52V18 „w~r ,t !…2m~ t !V28 „w~r ,t !…1Lw~r ,t !

1j~r ,t !, ~9!

where

V6~w![
V1~w!6V2~w!

2
~10!

andm(t)52L(t)21561.
Let us assume thatV1,2(w) and Ṽ1,2(w) are monostable

potentials. It is then clear according to conditions~7! that
neither of the two dynamics alone will lead to patterns. Ho
6-2
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ever, we will show that the nonequilibrium process of alt
nation in time, either periodically or randomly, of two no
linear dynamics neither of which leads to patterns, may l
to different kinds of oscillatory and stationary patterns.

Let ts denote the average time that the system spend
each dynamics. Then we expect that ifts→`, that is, if
switching is slow, every site will reach the equilibrium poi
w̃ i appropriate to the potentialVi(w) that drives the system
Therefore the field will oscillate between homogeneo
structures. However, if the switching process is sufficien
fast ~later we will state the condition quantitatively!, the fast
variable m(t) can be replaced by its average value,m(t)
;^m(t)&50. Therefore in that limit the system iseffectively
driven by the potentialV1(w). We stress that althoug
V1,2(w) are monostable and satisfy the condition~7! associ-
ated withno pattern formation,V1(w) may in general satisfy
either condition. In particular, ifV1,2(w) are such that

Vi8~ w̃ i !1w̃ i50 and Vi9~ w̃ i !.0, ~11!

V18 ~ w̃1!1w̃150 and V19 ~ w̃1!,0, ~12!

pattern formation will occur due to theglobal temporal al-
ternation of two dynamics, neither of which alone leads
patterns.

Next we show that nonlinearity is needed for such a p
tern formation mechanism. Consider for a moment the q
dratic local potentials, that is,linear local forces,Vi8(w)
5Ciw2Di , whereCi andDi are constants. Since we wa
these local potentials to satisfy Eq.~11!, we must haveCi

.0. ObviouslyV19 (w)5(C11C2)/2.0, which allows no
pattern according to Eq.~12!. We must thus conclude tha
pattern formation by the mechanism described herein is o
possible with nonlinear forces.

Given any particular choice ofV1,2(w) satisfying Eqs.
~11! and ~12!, the formation of spatial structures can be u
derstood in terms of the ratior of the two characteristic time
of the system: the time that the system spends in each
namics,ts , and the relaxation time to equilibrium states,t r ,

r 5
ts

t r
. ~13!

The timet r is the smaller oft1→2 andt2→1, wheret i→ j is the
relaxation time,under the action of Vj , of the homogeneous
state associated withVi . We can estimatet i→ j by focusing
only on theuku50 mode and assuming that, when the pote
tial switches fromVi to Vj , the mode amplitude behaves
a Brownian particle initially equilibrated in the effective lo
cal potentialṼi(w). When the local potential is switched
this point, which up to that moment was stable, becom
unstable. The relaxation time to the new homogeneous s
associated withVj is the time taken by the Brownian partic
to roll down the potential hill to the new equilibrium poin
@18#:
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t i→ j5
2

s2Ew̃ i

w̃ j
dy expS 2

s2
Ṽj~y!D E

w̃ i

y

dzexpS 2
2

s2
Ṽj~z!D .

~14!

The fluctuations should not dominate the dynamics, i.e., t
must be small enough not to swamp the potential barrie
V1 . Indeed, we might be tempted to approximate Eq.~14!
by the deterministic limit,

t i→ j52E
w̃ i

w̃ j dy

Ṽj8~y!
1O~s2!. ~15!

Notice, however, that due to the absence of an inertial te
in the model, Eq.~15! predicts the particle to be exponen
tially close to the equilibrium pointw̃ j after a finite time but
will only reach this point exactly in infinite time. For pract
cal purposes, we can consider that the particle has ‘‘reach
the equilibrium pointw̃ j when it is located at a distance o
O(s2) from this point, so that the timet i→ j can, in fact, be
estimated by Eq.~15! if the upper limit is replaced byw̃
1O(s2) @w̃2O(s2)# if the particle moves from right to left
@left to right#. Moreover, ifṼj8(w i) varies little in the interval

(w̃ i ,w̃ j ) we arrive at the convenient estimate

t i→ j.
w̃ i2w̃ j

Vj8~ w̃ i !1w̃ i

. ~16!

Note that this last expression does not diverge as does
~15! sinceVj8(w̃ i)1w̃ i5” 0.

On the other hand, the time that the system spends in
of the two dynamics,ts , reads as follows. If the dichotomou
switching is periodic,ts is clearly the semiperiod of the sig
nal, ts5T/2. If the switching is random, we takeL(t) to be
a dichotomous exponentially correlated random varia
with correlation timet. The correlation function of the as
sociated random dichotomous variablem(t) then is

^m~ t !m~ t8!&5e2ut2t8u/t. ~17!

The time that the system spends in each dynamics on a
age is thents52t.

As commented above, ifr @1, the system will alternate
between homogeneous states, and ifr !1, a stationary pat-
tern will be obtained. The caser;1 is the most striking;
when the switching is periodic, a resonance phenomenon
tween the two characteristic times of the system may p
duce oscillatory patterns. These patterns only occur un
periodic switching, that is, random switching even with
ratio r;1 does not producesustainedoscillatory patterns.
Although whenr .1 a collective oscillatorylike pattern ma
be found during a certain temporal window in the random
switched system, the probability thatm(t) retains a given
value for a timet longer thant r is appreciable@O(e2t/tr)#.
During such an event the whole system can relax to a ho
geneous state. Once a homogeneous state is reached~and it
6-3
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will , sooner or later!, it is very difficult for the system to
recreate an oscillatory pattern. Periodic switching clearly
passes this difficulty.

III. A PARTICULAR CASE: NUMERICAL SIMULATIONS

Let us now focus on the following particular family o
local potentials that satisfy the conditions~11! and ~12!:

V1,2~w!5A1,2S w4

4
6

w3

3
2

w2

2
7w D , ~18!

whereA1,2 are positive constants. Then the potentialsV6(w)
are

V6~w!5a6

w4

4
1a7

w3

3
2a6

w2

2
2a7w, ~19!

where

a65
A16A2

2
. ~20!

There are two different cases according to the values ofA1,2.
One is the symmetric case,A15A2, for which V1(w)
5V2(2w). Since it then follows thatV1(w) is an even
function of w, the inversion symmetryw↔2w is satisfied
by Eq.~9! in the limit r→0. Away from this limit, the equa-
tion is invariant under the transformation combinati
$w↔2w,m↔2m%. The other is the asymmetric case,A1
ÞA2, for which the inversion symmetry is never satisfie
We restrict our simulations to the representative casesA1
5A251 andA151, A252 ~see Fig. 1!.

We first compute the relaxation timet r . Using Eq.~14!
with s251022, we obtain

t r.2.2 when A15A251,

FIG. 1. Effective local potentialsṼ1(w) ~solid curve! andṼ2(w)
~dotted curve! with A15A251. The mirror symmetry is broken i
A15” A2.
03621
-

.

t r.1.3 when A151, A252. ~21!

These values are in agreement with those found in nume
experiments:t r52.4961022 and t r51.38661023, respec-
tively. The approximate expression~16! yields t r.1.8 and
t r.1.7, respectively.

In earlier work@6,7# we performed two-dimensional~2D!
numerical simulations of Eq.~8! on 1283128 lattices with
the local potentials~18!. There we showed that stationar
patterns of appropriate symmetries are indeed observed
r !1 and oscillatory patterns are seen whenr .1. Here we
perform complementary one-dimensional~1D! simulations.
The values of the relevant parameters areDt51023, Dx
50.5, Lx564, ands51022. In order to avoid possible in-
stabilities arising from boundary effects we implement pe
odic boundary conditions. As in the 2D case, we expect
typical wavelength of the pattern to bel52p/uk* u.2p and
the aspect ratio to beL/l;10; that is, if a pattern develops
we expect to find ten wavelengths inside the lattice. Th
simulation results are compared to detailed theoretical res
in the following section.

The initial condition is taken to be random according to
Gaussian distribution. As for the effect of the additive flu
tuations in the dynamics, only if the initial condition wer
chosen to be uniform@w(r ,0)5const for allr ] would they be
relevant, since in all other cases small fluctuations do
play a significant dynamical role. Clearly, a uniform initi
condition does not produce patterns in the determini
problem regardless of the value of the control parameterr.

In Figs. 2 and 3 we show the results of typical simulatio
for the symmetric 1D case with random switching. W
present a density plot of the field as a function of space

FIG. 2. Spatiotemporal density plot of the field for the 1D sym
metric caseA15A251 with slow random switching (r 54.5). A
clear alternation of homogeneous states is observed.
6-4
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time for r 54.5 ~Fig. 2, slow switching! andr 50.045~Fig. 3,
fast switching!. In the first case, a clear alternation betwe
homogeneous states is obtained, and in the second we se
formation of a stationary pattern.

Deterministic periodic switching leads to results similar
those of random switching whenr @1 ~alternation of homo-
geneous states! and r !1 ~stationary patterns!. However,
when r .1 an oscillatory pattern develops. Figure 4 show
again by means of a density plot of the field as a function
space and time, the oscillatory structure that arises wher
51.15. Below we will explain in detail the spatiotempor
structure of this oscillatory pattern.

The 1D asymmetric cases (A15” A2), periodically or ran-
domly switched, differ only in minor details from the sym
metric cases.

We recall@6# that for the 2D system, different symmetrie
determine the spatial arrangements and shapes of patt
For the symmetric case,V1(w) is exactly the SH potentia
mentioned earlier, Eq.~3!, with a50 andb.0. Therefore,
drawing parallels with that model, one expects and ind
observes stationary roll-shaped patterns in the limitr→0,
since Eq.~9! satisfies the inversion symmetry~whether the
alternation between dynamics is random or periodic!. On the
other hand, if r→`, alternation between homogeneo
states ensues, just as in the one-dimensional case. Whe
switching is deterministic, the main difference is the ex
tence of sustained oscillatory patterns whenr .1. Since in
that case the contribution ofV2(w) can no longer be ne
glected, the inversion symmetry is not satisfied by Eq.~9!,
whetherm51 or m521. Therefore, as in the SH model,
spotlike pattern emerges. However, Eq.~9! is invariant under
the combined transformation$w↔2w, m↔2m%. This
leads to a square arrangement of the oscillatory pattern,

FIG. 3. Spatiotemporal density plot of the field for the 1D sy
metric caseA15A251 with fast random switching (r 50.045).
The system is essentially driven by the potentialV1 , and a station-
ary pattern develops.
03621
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is, the spotlike structure presents ap/2 rotational symmetry
and oscillates between the two possible square-gl
transformed lattices.

For the asymmetric case, again no spatial structure de
ops whenr @1, and one obtains a simple alternation in tim
of homogeneous states. The caser !1 leads to a hexagona
stationary pattern, whether the switching is random or p
odic. This is also the pattern that emerges in the 2D
model in the absence ofw↔2w symmetry. When alterna
tion is periodic, the caser .1 leads to a hexagonal oscilla
tory pattern. Here there are no symmetry requirements
force alternation between glide-transformed lattices. Inste
we obtain truly localized excitations that resemble the os
lons found inshakengranular materials and clay. Figure
shows several snapshots over one period forA151, A2
52, and r 50.95. The hexagonal oscillatory pattern
clearly seen.

IV. MODE AMPLITUDE EQUATIONS

We now present a theoretical approach to the problem
terms of mode amplitude equations. For simplicity, and
cause the most interesting features of the problem occur e
there, we restrict most of our calculations to the on
dimensional case. Moreover, since the periodic switch
case captures the whole phenomenology of the pattern
mation mechanism, we limit the calculations to that case

Let us consider the following variant of our particula
choice of local potentials~18!:

V1,2~w!5A1,2S «
w4

4
6g

w3

3
2a

w2

2
7w D , ~22!

FIG. 4. Simulation results showing the 1D oscillatory patterns
the spatiotemporal evolution of the field for the symmetric ca
A15A251. Switching is periodic withr 51.15. Figure 9 shows a
single spatial and temporal period of such a pattern.
6-5
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where we have introduced the parametersa, «, andg in the
nonlinear terms of the potential. For the moment, we w
consider these parameters to be small@O(a)5O(«)
5O(g)#, and such thatVi(w) and V1(w) satisfy the re-
quired stability conditions~11! and~12! for pattern formation
under alternation of dynamics. Since the limitsr @1 and r
!1 will, respectively, produce alternation between homo
neous states and stationary patterns with typical wavele
l52p/k* 52p, the most unstable modes will bek50 and
k5k* 51 as we move from one limit to the other, that is, w
expect solutions dominantly of the form

FIG. 5. Snapshots of the 2D field for the asymmetric case w
A151, A252, and r 50.94 through a full period of the forcing
function. The localized excitations are arranged in a hexagonal
tern.
03621
l
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w~x,t !ur @15A0~ t !,

w~x,t !ur !15A1~ t !eix1A1* ~ t !e2 ix. ~23!

However, the phenomenology observed in the oscillat
patterns is not well described by considering only these
modes or a linear combination of them. In order to reprodu
these structures it is necessary to include the first Fou
spatial harmonic ofk* , i.e.,k52k* , which arises from non-
linear interactions. Hence we introduce the following ans
for the field:

w~x,t !5A0~ t !1 (
n51

2

@An~ t !einx1An* ~ t !e2 inx#. ~24!

Substituting Eq.~24! into Eq. ~9! and neglecting all terms o
order einx with unu>3, we obtain the following evolution
equations for the mode amplitudes A0(t), A1(t), and A2(t)
@6 corresponds to the dichotomous variable taking on
valuem(t)561]:

Ȧ05@a~a16a2!21#A01~a26a1!2«~a16a2!

3~6uA1u2A016uA2u2A013A1
2A2* 13A1*

2A21A0
3!

2g~a26a1!~A0
212uA1u212uA2u2!, ~25!

Ȧ15a~a16a2!A123«~a16a2!~ uA1u2A1

1A0
2A112uA2u2A112A0A1* A2!

22g~a26a1!~A0A11A1* A2!, ~26!

Ȧ25@a~a16a2!29#A223«~a16a2!~2uA1u2A2

1A0
2A21uA2u2A21A0A1

2!

2g~a26a1!~A1
212A0A2!. ~27!

We assume that the Aj can be expanded in the paramete
a, «, andg,

A j5A j
(0)1kA j

(1)1O~a2,«2,g2!, ~28!

where k5O(a,«,g). The leading order for theAj then
yields the equations:

Ȧ0
(0)52A0

(0)1~a26a1!. ~29!

Ȧ1
(0)50. ~30!

Ȧ2
(0)529A2

(0) . ~31!

Equation~29! can be solved completely by requiring that A0
should be a continuousT-periodic function. The result is

h

t-
6-6
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A0
(0)~ t !5H a21a1$12e2t@12tanh~T/4!#% if tP@0,T/2#

a22a1$11e2t@12tanh~T/4!22eT/2#% if tP@T/2,T#.
~32!
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The term A2
(0) relaxes to zero rapidly in the long-term tem

poral evolution, and hence we can neglect it. Under this
sumption, the next order for A2 reads

Ȧ2
(1)529A2

(1)2~A1
(0)!2S 3«~a16a2!

k
A0

(0)1
g~a26a1!

k D .

~33!

As for A1, Eq. ~30! indicates that we must consider its ne
order,

Ȧ1
(1)5

A1
(0)

k
$a~a16a2!23«~a16a2!~ uA1

(0)u21~A0
(0)!2!

22g~a26a1!A0
(0)%. ~34!

At the same time, Eq.~30! suggests that a reasonable simp
fication is to neglect the temporal dependence of A1

(1) by
substituting^(A0

(0))2& for (A0
(0))2 and ^A0

(0)& for A0
(0) :

^A0
(0)&5

1

TE0

T

A0
(0)~ t !dt5a2 ,

^~A0
(0)!2&5

1

TE0

T

~A0
(0)~ t !!2dt

5~a2!21~a1!2S 12
4 tanh~T/4!

T D . ~35!

Equations~33! and ~34! can be solved completely by us
ing the result~32! and requiring that A2 should be a continu-
ousT-periodic function. The resulting expression for A1(t) is

FIG. 6. The maximum in the resonance parameter A0A1 as a
function of the periodT gives the alternation period most likely t
produce oscillatory patterns.
03621
s- A1~ t !56ReH Fa22gua2u
3«

2~a2!2

1~a1!2S 4 tanh~T/4!

T
21D G1/2J ; t. ~36!

We do not include the analytic expression for A2(t) because
it is complex and not particularly illuminating. We do no
that it can written in the form

A2~ t !5A1
2~ t !F~ t !, ~37!

whereF(t) is a continuousT-periodic function. Therefore, if
A1(t)→0, then also A2(t)→0.

Despite the fact that the theory is perturbative in the
rametersa, «, andg, and so are the expressions~32!, ~36!,
and ~37!, we argue that the results can be applied at le
qualitatively even whena5«5g51, that is, to the local
potentials used in the numerical simulations. We again be
by first discussing the symmetric case,A15A251, i.e.,a1

51, a250. In the limit r !1 we expect a stationary pa
tern, such asw(x,t)5A1 cosx; hence the mode amplitude
A0(t) and A2(t) must go to zero, as actually occurs in th
theory. Moreover, in that limit Eq.~26! reduces to the Stuart
Watson equation@19#, and the steady state of A1(t) can be
exactlycomputed:

A151/A3, ~38!

which is exactly the value found using the approximate eq
tion ~36!. At the other extreme, in the limitr @1 we expect
A1(t) and A2(t) to go to zero since the system alternat
between homogeneous states. That is the case for Eqs.~36!
and~37!. Also note that Eq.~32! indicates thatw(x,t) indeed
switches between2a(1)521 anda(1)51 for all x.

Oscillonlike patterns are expected in the intermediate
gime, where both alternation and spatial structure are
evant. Therefore the quantity

max@A1~ t !A0~ t !# for tP~0,T! ~39!

as a function ofT estimates the regime where oscillato
patterns are most likely to appear. We represent Eq.~39! in
Fig. 6. The maximum of the function is aroundT;3. We
take this value of the period to be the resonance value of
two characteristic times involved in the system, i.e.,r .1, so
that t r;1.5. This value is in agreement with the one alrea
found in numerical simulations and also in theoretical cal
lations.

We now compare the results found in the 1D numeri
simulations with the theoretical predictions. The three pan
in Fig. 7 depict the theoretical and numerical values obtain
for A0(t), A1(t), and A2(t) for the casesr @1, r .1, and
r !1, respectively. In both theory and simulations, A0(t) os-
6-7
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FIG. 7. Theoretical~upper portion of each panel! and numerical~lower portion! values of the coefficients of the three modes retained
the expansion, Eq.~24!, for the casesr @1 (T510, first panel!, r .1 (T54.45, second panel!, andr !1 (T51022, third panel!. In the first
panel the only contribution to the dynamics comes from thek50 mode, that is, homogeneous states alternating in time. In the third p
only the constant contribution of thek51 mode becomes relevant, leading to a stationary pattern. The theoretical approach negle
oscillations of the A1(t) mode, which are evident in the second panel.
a
e

e
if
e,

s
tions
the

and
lied
cillates around zero with an amplitude that decreases
tends to zero as the periodT decreases. The mode amplitud
A2(t) fluctuates around zero in the regimesr !1 andr @1,
and presents oscillations in the intermediate regime wh
oscillons are found. Finally, A1(t) shows a constant value
r !1 or r @1; however, in the intermediate oscillon regim
03621
nd

re

A1(t) in the numerical simulations exhibits oscillation
around a constant value. We have neglected these oscilla
in our theoretical approach. They are not fundamental to
spatiotemporal behavior ofw(x,t) as we will see below. We
stress again that these comparisons between theory
simulations use perturbative theoretical expressions app
6-8
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well beyond the perturbative regime. Nevertheless, the qu
tative agreement is clear and becomes quantitative in
perturbative regime.

The qualitative agreement can be further ascertained
using Eq.~24! to reconstruct the fieldw(x,t). The results are
shown in Figs. 8–10, wherew(x,t) is depicted by means o
density plots for the casesr @1 ~Fig. 8!, r .1 ~Fig. 9!, and
r !1 ~Fig. 10!. As said before, even when neglecting t
oscillations of A1(t), the theory reproduces the behavior
the field as a function of the period. Whenr @1 alternation
between homogeneous states is obtained, and withr !1 a

FIG. 8. Theoretical~upper panel! and numerical~lower panel!
spatiotemporal density plot ofw(x,t) for the symmetric caseA1

5A251 with slow periodic switching (T510, r @1). The alter-
nation of homogeneous states is captured quantitatively by
theory.

FIG. 9. Theoretical~upper panel! and numerical~lower panel!
density plot of the field for the symmetric case with intermedi
periodic switching (T54.5, r .1). The oscillatory pattern is cap
tured qualitatively by the theory.
03621
li-
e

y

stationary pattern appears. The agreement between th
and simulations is essentially quantitative. The intermed
regimer .1 yields an oscillatory pattern in qualitative agre
ment with the pattern obtained from the simulations.

For the asymmetric case,A15” A2, we briefly note that
again theory and simulations agree qualitatively showing
the phenomenology as a function of the ratior. The quanti-
tative agreement, however, is not as good as in the symm
ric case.

The spatial arrangement of the patterns obtained for
two-dimensional case can be inferred from our theory as
lows. The structures arise form the nonlinear interactions
tween modesk j of magnitudeuk j u5k* 51. Therefore, let us
consider

w~r ,t !5 (
uk j u51

A1 je
ik j •r1A1 j* e2 ik j •r. ~40!

Substitution of Eq.~40! into Eq. ~9! leads to the evolution
equation for the modes A1 j @20#. We particularly highlight
the following nonlinear mode interactions:

Two modes: ~a26a1!A1mA1n , ~41!

Three modes: ~a16a2!A1 jA1 jA1 j* modal self-interaction
~42a!

Three modes: ~a16a2!A1 jA1mA1m* modal interaction.
~42b!

The modes involved in the interactions~41! are those for
which km1kn5k j , that is,km , kn , andk j lie apart byp/3.
This favors a hexagonal pattern if the symmetries of the s
tem support this pattern. The three-mode interactions, on
other hand, favor a square pattern or a roll pattern depen
on the symmetries that must be fulfilled.

First consider the caser !1 leading to stationary patterns
Since the adiabatic elimination of the fast variable,m

e

FIG. 10. Theoretical~upper panel! and numerical~lower panel!
density plots of the field for the symmetric case with fast perio
switching (T51022, r !1). The stationary pattern is capture
quantitatively by the theory.
6-9
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→^m&50, is equivalent to neglect of the6 terms in Eqs.~41!
and ~42!, it follows that the contribution of the two-mod
interaction plays no role in the symmetric case sincea2

50. The three-mode interactions must always be taken
account. In the symmetric case no particular regular arran
ment arises from the three-mode interactions~42! because all
the modes obey the inversion symmetryw↔2w. This then
leads to a roll-shaped pattern. On the other hand, in
asymmetric casea25” 0 and the inversion symmetry is n
longer satisfied. The two-mode interaction~41! then becomes
relevant. As a result, the pattern is hexagonal.

We now move to the caser .1, i.e., oscillatory patterns
For the asymmetric case, the contribution of the two-mo
interactions again leads to a hexagonal pattern, but no
oscillates in time. In the symmetric case, recall that the
version symmetry,together witha time-translational symme
try, t→t1T/2, is observed; that is, Eq.~9! remains invariant
under the combined transformation$w↔2w,m↔2m%.
Therefore the field oscillates between two glide-transform
structures. We note that ifm51 or if m521 the system
does not present inversion symmetry, so we expect a spo
pattern for this oscillatory structure. However, the combin
symmetry transformation forbids a hexagonal pattern. A
result, only the modal interactions whereinkm and k j are
separated byp/2 are allowed, producing a square pattern t
oscillates between the two possible glide-transformed st
tures.

V. DISCUSSION AND CONCLUSIONS

The global alternation of two dynamics, each of whi
leads to a homogeneous steady state, can produce stati
or oscillatory patterns upon alternation. The appearanc
spatial or spatiotemporal patterns depends on the ratior of
the alternation time and the relaxation time of the system
the slower of the two dynamics. Random alternation lead
stationary spatial patterns, while periodic alternation m
lead to stationary or oscillatory spatial patterns. The symm
try of the patterns depends on the symmetries of the po
tials.

This mechanism for pattern formation was earlier illu
trated through numerical simulations in a 2D system ba
on the Swift-Hohenberg equation@6,7#. Herein we have per-
formed numerical simulations for the corresponding 1D s
tem and have developed an analytic three-mode theory
ce

C.
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captures~in many cases even quantitatively! the behavior in
all parameter regimes. The three modes that are include
this theory are the uniform mode (k50), the most unstable
mode (k5k* 51), and the first Fourier spatial harmonic o
this unstable mode (k52k* ). The analytic results lead to
periodic alternation of homogeneous states for larger, sta-
tionary patterns for smallr, and in the case of periodic alte
nation to oscillatory patterns for intermediater.

We have also outlined the way in which this theory c
easily be extended to the 2D system, where more than t
modes need to be considered. Here one has to include
modes with a wave vector of unit magnitude as well as
subset of two-mode and three-mode interactions that do
nate the dynamics. The number of modes is still small a
analytically tractable.

The alternation mechanism has thus been presented
merically and understood analytically for certain classes
models based on the Swift-Hohenberg equation. One can
vision many other situations in which a global alternati
between homogeneous or even chaotic dynamics may lea
spatiotemporal pattern formation. We stress again the m
interesting aspect of this mechanism, namely, that the a
nation is global. A parallel theory for an entirely differen
class of models of the reaction-diffusion type has been
veloped@21#. The minimal feature that is required for an
alternation mechanism to lead to pattern formation is that
most unstable mode of the system corresponds to a non
eigenvectork, whose magnitude determines the length sc
of the pattern. In the Swift-Hohenberg-type model cons
ered here this nonzero-wave-vector instability is due to
particular form of the coupling. In reaction-diffusion system
with ordinary diffusive coupling, one requires at least tw
coupled fields to obtain a nonzero-wave-vector instabi
@21#.
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